The CaM Kinase CMK-1 Mediates a Negative Feedback Mechanism Coupling the C. elegans Glutamate Receptor GLR-1 with Its Own Transcription

نویسندگان

  • Benjamin J. Moss
  • Lidia Park
  • Caroline L. Dahlberg
  • Peter Juo
چکیده

Regulation of synaptic AMPA receptor levels is a major mechanism underlying homeostatic synaptic scaling. While in vitro studies have implicated several molecules in synaptic scaling, the in vivo mechanisms linking chronic changes in synaptic activity to alterations in AMPA receptor expression are not well understood. Here we use a genetic approach in C. elegans to dissect a negative feedback pathway coupling levels of the AMPA receptor GLR-1 with its own transcription. GLR-1 trafficking mutants with decreased synaptic receptors in the ventral nerve cord (VNC) exhibit compensatory increases in glr-1 mRNA, which can be attributed to increased glr-1 transcription. Glutamatergic transmission mutants lacking presynaptic eat-4/VGLUT or postsynaptic glr-1, exhibit compensatory increases in glr-1 transcription, suggesting that loss of GLR-1 activity is sufficient to trigger the feedback pathway. Direct and specific inhibition of GLR-1-expressing neurons using a chemical genetic silencing approach also results in increased glr-1 transcription. Conversely, expression of a constitutively active version of GLR-1 results in decreased glr-1 transcription, suggesting that bidirectional changes in GLR-1 signaling results in reciprocal alterations in glr-1 transcription. We identify the CMK-1/CaMK signaling axis as a mediator of the glr-1 transcriptional feedback mechanism. Loss-of-function mutations in the upstream kinase ckk-1/CaMKK, the CaM kinase cmk-1/CaMK, or a downstream transcription factor crh-1/CREB, result in increased glr-1 transcription, suggesting that the CMK-1 signaling pathway functions to repress glr-1 transcription. Genetic double mutant analyses suggest that CMK-1 signaling is required for the glr-1 transcriptional feedback pathway. Furthermore, alterations in GLR-1 signaling that trigger the feedback mechanism also regulate the nucleocytoplasmic distribution of CMK-1, and activated, nuclear-localized CMK-1 blocks the feedback pathway. We propose a model in which synaptic activity regulates the nuclear localization of CMK-1 to mediate a negative feedback mechanism coupling GLR-1 activity with its own transcription.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The p38 MAP kinase pathway modulates the hypoxia response and glutamate receptor trafficking in aging neurons

Neurons are sensitive to low oxygen (hypoxia) and employ a conserved pathway to combat its effects. Here, we show that p38 MAP Kinase (MAPK) modulates this hypoxia response pathway in C. elegans. Mutants lacking p38 MAPK components pmk-1 or sek-1 resemble mutants lacking the hypoxia response component and prolyl hydroxylase egl-9, with impaired subcellular localization of Mint orthologue LIN-10...

متن کامل

RAB-6.1 and RAB-6.2 Promote Retrograde Transport in C. elegans.

Retrograde transport is a critical mechanism for recycling certain membrane cargo. Following endocytosis from the plasma membrane, retrograde cargo is moved from early endosomes to Golgi followed by transport (recycling) back to the plasma membrane. The complete molecular and cellular mechanisms of retrograde transport remain unclear. The small GTPase RAB-6.2 mediates the retrograde recycling o...

متن کامل

LIN-23-Mediated Degradation of β-Catenin Regulates the Abundance of GLR-1 Glutamate Receptors in the Ventral Nerve Cord of C. elegans

Ubiquitin-mediated protein degradation has been proposed to play an important role in regulating synaptic transmission. Here we show that LIN-23, the substrate binding subunit of a Skp1/Cullin/F Box (SCF) ubiquitin ligase, regulates the abundance of the glutamate receptor GLR-1 in the ventral nerve cord of C. elegans. Mutants lacking lin-23 had an increased abundance of GLR-1 in the ventral cor...

متن کامل

The kinesin-3 family motor KLP-4 regulates anterograde trafficking of GLR-1 glutamate receptors in the ventral nerve cord of Caenorhabditis elegans

The transport of glutamate receptors from the cell body to synapses is essential during neuronal development and may contribute to the regulation of synaptic strength in the mature nervous system. We previously showed that cyclin-dependent kinase-5 (CDK-5) positively regulates the abundance of GLR-1 glutamate receptors at synapses in the ventral nerve cord (VNC) of Caenorhabditis elegans. Here ...

متن کامل

Ubiquitin and AP180 Regulate the Abundance of GLR-1 Glutamate Receptors at Postsynaptic Elements in C. elegans

Regulated delivery and removal of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors (GluRs) from postsynaptic elements has been proposed as a mechanism for regulating synaptic strength. Here we test the role of ubiquitin in regulating synapses that contain a C. elegans GluR, GLR-1. GLR-1 receptors were ubiquitinated in vivo. Mutations that decreased ubiquitinat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016